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Convection is considered in a narrow vert ical  slit with lateral  tempera ture  gradient in post- 
Newtonian approximation as a model problem. It is shown that the convection rate increases  
with gravity potential. 

1. The Role of Convection in Relativistic Astrophysics .  At present  the investigation of motion and of 
the behavior of mat ter  in s t rong gravity fields in the case of considerable tempera ture  gradient with large 
internal energy taken into account is of great  interest .  Here only one aspect  will be considered,  namely 
we shall t ry  to explain the role of free convection of a viscous heat-conductive fluid in s t rong gravity fields. 

The role of gravity convection in as t ronomy has a l ready been acknowledged for some time. Indeed, 
convection explains a number of as t rophysical  phenomena and p rocesses ;  however, convective motions in 
objects with a high gravity potential have not as yet been investigated although their  important  role was 
pointed out by Zel 'dovich and Novikov in [1]. The effect of gravity convection in s t rong fields is of part icu-  
lar interest  in connection with the latest concepts and discover ies  in the field of relativist ic as t rophysics ,  
namely: neutron s tars ,  quasars ,  supers ta rs ,  residual  radiation, pulsars  [1,2]. The ext remal  conditions 
mentioned previously are  valid for these cosmic objects. 

It follows from the Newtonian convection theory [1] that i ts  effects are  proport ional  to the mass of the 
object in whose field the convection motion is investigated. Of course,  for a larger  mass  the convection 
assumes  a much grea te r  role. The role of convection also increases  with the increase  in tempera ture  
gradients which takes place is cosmic objects. 

For  objects comparable with gravity radius of the supe r s t a r  of a neutron s ta r  var ie ty  convection may 
lead to a considerable increase  in the velocity of motion; it can even exceed the parabolic velocity and re-  
sult in the ejection of masses  from the object. It is therefore  probable that convection which causes the 
escape of mat ter  may be instrumental  in protecting the evolution of massive and dense objects from catas-  
trophic collapse. 

Convection in cosmic objects can lead to nonradial oscillations of considerable mass of mat te r  which, 
in turn, can result  in gravity radiation; the latter is of considerable in te res t a t  present  in view of the latest 
experiments  ca r r i ed  out by Weber [4]. Since no objects have so far  been found which would cause powerful 
gravity radiation it is important  to find out what role the contribution of the convective mechanism plays 
in explaining gravity radiation of cosmic objects. 

Accelerated plasma ejected from the main body of a cosmic object may also generate a s t rong e lec t ro-  
magnetic radiation. Here the vulcanic hypothesis of Dyson [5] is of considerable interest  in accordance 
with which pulsar  radiation takes place when plasma mat ter  is ejected from the main layer of the neutron 
s ta r  because of s t rong convection the latter being sufficiently strong so that it p ie rces  the outer solid c r y s -  
tallic layer  of the neutron s tar .  

All this points to the fact that gravity convection may have an important  part  to play in the evolution 
of cosmic  objects and that a number of cosmic phenomena and effects in s t rong fields may be explained by 
convection. Therefore  the effect of gravity convection is today a very  important  and topical study. 

In the present  ar t ic le  the general  problem of motion of viscous heat-conductive fluid is f i rs t  formu- 
lated within the general  theory of relat ivi ty (GTR). However, since the study of such a motion would be 
very  difficult we turn our attention tohydrodynamics in  post-Newtonian approximation i.e., w i t h a n a c c u r a c y  
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up to the t e rms  (v2/c 2) and (U/c2), where v is velocity; U is gravi ty  potential and c is light velocity. How- 
ever ,  even in this ease it is ex t remely  difficult to obtain an analytic solution. Therefore ,  our model prob- 
lem will be s ta t ionary post-Newtonian convection in a ver t ical  slit with a lateral  t empera ture  gradient.  
Special charac te r i s t i c  features will be studied on this example of convection in s trong gravi ty fields thus 
confirming its important  role in as t rophys ica l  objects. 

2. Viscous Heat-Conductive Fluid in GTR. It is known [3,4] that the motion of a viscous hea t -con-  
ductive fluid in the special  theory  of relat ivi ty (STR) is descr ibed by the relativist ic hydrodynamics equa- 
tions 

Tik, k = 0, (1) 

where the comma indicates part ial  differentiation. The Roman subscr ipts  and superscr ip t s  assume the 
values 0, 1, 2, 3, the Greek subscr ipts  the values 1, 2, 3, and T ik is the e n e r g y - m o m e n t u m  tensor  of the 
viscous fluid. The express ion for this tensor  is given by [3] 

TZk = T~k ,~_ ~tk = (e + p) uiu k - -  pgik + ~tk, (2) 

where T~ k is the e n e r g y -  momentum tensor  of an ideal fluid; e is the energy  density; p is p ressure ;  gik 
are  metr ic  tensor  components (of signature 2); u i are  the 4-veloci ty  components;  ~-ik is tensor  of viscous 
tensions [3], 

~ t k = _ ~ c (  Ou__~_ Ou k Ou t Ou k ) 

Ox h + ~ + uku ~ + u~u ~ Ox ~ ax e 

�9 ( ~ _  -3-2 "~ ~au~ (3) n) c (e 'k + .,.k), 
\ 

where 77 and ~ are  the f i rs t  and second viscosi ty  coefficients respect ively.  

The equation of conservat ion of the number of part icles  [3] 

(nu ~ + vl). i = 0 (4) 

should be added to Eq. (1). In the above n is the density of the number of part icles ,  and the vec tor  u i, due 
to heat conductivity, is writ ten as 

c " - T -  + Ox----;" ' (5) 

where X is the heat-conduction coefficient; T is tempera ture ;  w is the heat function; # is chemical  poten- 
tial. A derivation of the express ions  (3) and (5) f rom the microscopic  point of view can be found in [7]. 

Yet another equation, namely the state equation 

p = p(V, T, S), (6) 

should be added to Eqs. (1) and (4). Then the sys tem (1), (4), and(6) descr ibes  the motion of a viscous heat-  
conductive fluid in STR. 

In the process  of descr ibing the fluid motion in GTR ordinary  derivatives should be replaced by 
covar iant  ones in (1), (3), and(4); then the equations of motion in GTR are 

Tik;k = 0, (7) 

(tin ~ + O, (8) ~i); i 

where a semicolon indicates a covar iant  derivative.  Einste in 's  gravitational equations must  a lso be added: 

R~k_ - 1 ~k- ~-  g /~ = __ • (9) 

The sys tem of equations (7)-(9) and (6) descr ibes  the motion of a viscous heat-conductive fluid in 
GTR. In the general  case it is ex t remely  difficult to find a solution. 

We shall confine our considerat ion to a par t icu lar  but important  and interest ing model problem which 
is familar  in Newtoniantheory, th isbeing the fluid motion in a narrow ver t ical  channel in the case of lateral  
t empera ture  gradient.  Post-Newtonian hydrodynamics  willbe employed, that is, t e rms  will be retained of 
the ser ies  in the powers of 1/c 2. 
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3. Post-Newtonian Stat ionary Convection in Ver t ica l  Channel with La te ra l  T e m p e r a t u r e  Gradient.  
To solve the above problem the post-Newtonian hydrodynamics  developed by  Chandrasekhar  [8] is employed.  
In such dydrodynamics  t e r m s  of the s e r i e s  up to U/c 2 and v2/c 2 inclusive a r e  re ta ined.  

Some usual  s implifying assumpt ions  a re  now made.  The case  of s ta t ionary  convection will be analyzed,  
i .e. ,  a l l t e r m s  containing the der iva t ives  with r e spec t  to t ime will be omitted.  In the v i scos i ty  t enso r  (3) 
the second v i scos i ty  ~ is a l so  omitted.  F u r t h e r m o r e ,  squares  of veloci t ies  a re  a lso  omit ted (which l ine- 
a r i z e  the problem).  Finally, one se ts  

u~v = 0, (10) 

which is a re la t iv is t ic  analog in the usual sense  of the fluid being incompress ib le ;  then the equations of 
post-Newtonian hydrodynamics  (7) become 

0x-- ~ + r~o~ ~176 +2F~o ~~ + r~v~v +y13"~ ~ = 0. (11) 

The quantity T0~ k was evaluated in [6]. Under our assumptions the components of the metric tensor canbe 
written as [6] 

+ 2U + c~ (2U~ + 4q~) + 0 (c-eL gOO= 1 -77- 

gO~ = 1 4U~ + 0 (c-~), 
c 3 (12) 

and the veloci ty  components  as  

( 2u) g~l~ = _  1-- - ~ -  8~ + 0 (c-4), 

U 
u ~ = 1 + -~-  + 0 (c-*), 

( u ~ =  1+ c ~ ] c +O(c-~)" 

The Chris toffe l  symbols  and the quanti t ies  y a  a r e  as follows: 
1 O U  

r0~ r ~  c~.  0x , 

r~o = - • �9 o u  
C 2 OX a ' 

(< o o) F~o 
Ox~ Ox~ �9 

r ? ~ = ~ ( o u  a u  ~ a u  ~ , )  , 
~ + Ox~ ~ Ox~ 

2 o u  
y6r ~ - o  

d Ox ~ 

In the re la t ions  (12)- (14) the grav i ty  potential  U is re la ted  to the densi ty p by the Poisson  equation: 

AU = - -  4nGp. 

The potential  U a can be de te rmined  f rom the equation 

AU~ =- - -  4rcGpv~, 

and the potential  @ f rom the equation 

A~ = - -  4nGp~, 

(13) 

(14) 

(15) 

(16) 

(17) 

whe re 

~ = U +  3 p 
2 p 

(18) 

In view of the above the t enso r  of the viscous tensions can be wri t ten in the fo rm 
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~ik = _ ~lC (gkmv,.u~ + g~'V,.U k + uku'v~u* + du~v#~), (19) 

where the covariant derivative V e is 

au~ + r~mU". (20) V~Ut = O---~ 

In Eq. 01) only the t e rms  up to 1 /c  2 should be retained. It can easi ly  be verifield from (19) by direct  com- 
putation that 

x ~176 = 0 ( c - 9 ,  x ~ = O(cTX), (21) 

and since 

r~'o = o ( c - q ,  r[0 = o (c-9 ,  (22) 

therefore the t e rms  F a r  ~176 and F~0r ~ can be omitted since they are of a higher order  of smal lness  than 
2 O0 

1 / c .  Having car r ied  out some computations the following expression can be obtained: 

\ ax~ + ~ - -  - ~ -  t axe ax~ / c ~ " -ax~ 
(23) 

2% . OU _[. 2vv. . OU 6 ~ ] ,  
+ c - - i -  " Ox ~ c ~ ax~ 

or ,  using (14) and (10) which in post-Newtonian approximation becomes 

O l Y e ( l +  ~ ) 1 = 0 ,  (24) 
Ox ~ 

one finally obtains 

[( 7 ) <  5 0 - 7  + r~rx~v + y ~  = q 1-- U ax~ o--~- + c 2 " Ox~ ax~ 

2 0% ou  v~ a2u 2 a2u (25) 

+ 7 " " o ,  - - r  + 0---7 + Y % 0-7- 

According to Chandraseldaar [8] one has under our assumptions 

~k a [ (  2 u )  ] OU 2 ( OU , oq~ , (26) 

Finally. the s ta t ionary linearized hydrodynamic equations of viscous fluid in post-Newtonian approximation 
become 

az% ~ p - P  

+ n [ ( i _ u )  a~v~ 5 av~ 
I . /  1 

I 02U 2 
+ 7  % ~ax~ ax~ + 7 o~, 

2 ( au ar ) 
c~ t, m ~ ~- ax---g- 

au__u_ + 2__. ao___~ au 
Ox~ c 2 ax ~ ox v 

~ ] O. ax~ ax~ 

(27) 

Standard convection equations can be obtained from Eq. (27). To this end it is assumed that 

P=PoA-Pl, P=P0 +Px,  T----T o + T  1, n = n  o + n  1, (28) 

where the subscript  zero refers  to the equilibrium values of the parameters ,  and the subscript  1 r e f e r s t o  
their  perturbed values. 

In the derivation of convection equations the equilibrium equation is, as usual, used though by now in 
its post-Newtonian approximation. By virtue of (27) it becomes 

ax~ L k c ~ p~ - -  Oo ax,, c= ~,o ~p ~ + ~ ] = 

Similarly as in the Newtonian case for the perturbed density value it is assumed that 
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~)1 : - -  ~PoTx, 

where fl is the t he rm a l  expansion coefficient.  Then the hydrodynamics  equations governing convection be-  
C o m e  

Po Ox~ c2 9o Ox~ Ox~ 

(__ )] [(1 z ou o~ n - - 7 ;  
+ - - d  ~ Ox~ + o ~ -  +-~o ox~ ox~ 

5 Ov~ OU 2 Ov v OU + l v ~  OW 
+ c - T "  Ox~ Ox---V + c ~ "  0--~- Ox v c 2 Ox ~ Ox~ 

2 0W ] : :0 .  (31) 
+ ~ v~ Ox~ Ox----7 

If the t e r m s  of the o rde r  of 1/c 2 a re  omit ted the c lass ic  equation [9] is at  once obtained f rom Eq. (31) 
which desc r ibes  the convective motion in a nar row ver t i ca l  channel in the case  of la te ra l  heating~ 

1 . Op~ OU ~1 O~v~ + B T ~ - -  + - -  �9 O. (32) 
Ox~ - Ox~ Po ax f~ ax~ po 

The equation of conservat ion  of par t i c les ,  o r  otherwise the ene rgy  conserva t ion  equation is now con- 
side red. 

Equation (8) can be rewri t ten  as  

_ _  0 " ~ l  . O(nu9 + _ _ +  r~knuk + r~kv k =0. (33)  
Ox t Ox ~ 

An equation for per turbed par t i c les  is now const ructed f rom (33) bea r ing  in mind that in the equi l ibr ium 
state  the relat ion 

Ova~ ~ v~0) 0 (34) 
Ox ~ + r~ = 

is valid.  It  is not difficult to see that one can omit  t e r m s  depending on the 4-ve loc i ty  in the express ion  for  
v a  since they a r e  of a higher  o rde r  of magnitude.  

The fact  that our heating is only la tera l ,  i .e. ,  

T1 = T1 (x2), (35) 

is now taken into account  and a lso  that the p rob lem is two-dimensional ,  namely  that  all  quanti t ies a r e  in- 
dependent of xi; it is a s sumed  that  the gravi ta t ion force  is in the opposite d i rec t ion to the X 3 a x i s .  Then 
the ene rgy  equation for  the per turbed  quanti t ies is 

Ova,) 0 (no u~) 0 (no u3) . 
Ox ~ . + Ox ~ + Ox------ w -  + rhno u3 + rhnoU ~ = o. (36) 

By using (14) it  is not difficult to show that 

Ft 2 OU 
i 2  = - -  ~ cS Ox 2 , (37) 

~3 = 2 .  ov  
c~ 0x 8 (38) 

Since it  was a s sumed  that  the sl i t  is na r row the gradient  of the potential  (37) can be omitted.  

Here  by the per turbed  quantity v~l ) one unders tands  the express ion  

v~l) = __X . no OT1 

C W o OX 2 
(39) 

In the der ivat ion of (39) the the rmodynamic  identity 
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d It w d T +  1 
- - ~ = - -  nT----- Y ~ - f - d p  (40) 

was employed. In view of what was said above the energy conservat ion equation (36) becomes  

Ova, 0 (sou 2) 0 (no u3) + r~anou a = 0, (41) 
OP + OP + Ox 3 

or, by using (18),(38), and (39) it becomes  

- - - -  vc~ 1+ =0 .  
(ax2)2 + ax ~ - ~ -  (42) 

By using (24) which is valid the equation of energy  conservat ion can finally be written as follows: 

�9 O~TI  = O. (43) 
(0x2) ~ 

By di rec t  substitution of the c lass ica l  equation governing the convection in a narrow ver t ical  slit  with lateral  
heating, 

v~ = 0, t'~ = v 3 (x2), (44) 

into (13) and (24) one finds that the solution (44) does not sat isfy Eqs. (31) and (24). This indicates that in 
post-Newtonian approximation the profile of convection velocities will no longer be g rea t e r  than cubic 
parabola.  

The specific feature of GTR in the sys tems  (24) and (31) lies also in that in addition to a more  com-  
plicated dependence on the potential gradient  there occurs  a dependence on the potential i tself (potential dif- 
fe rence). 

It is ex t remely  difficult to solve sys tems  (24),(31), and (43) in the general  case which should obvi- 
ously be done numerical ly .  However, an exact  analytic solution for these sys tems  can be obtained in the 
par t icu lar  and important  case.  

Let us cons ider  convection in an object, for example, in a neutron star .  The standard pa ramete r s  
of such a s t a r  a re :  radius R = 10 kin, mass ,  approximately  so lar  ~2 �9 103~ g. If convection is now con- 
sidered in a slit  of length r =0.1 at the distance R to the center ,  then one can a s sume  that the quantity 
U/c 2 ~0.15 is approximately  constant and that the quantity (1/c2). (OU/OR) can be everywhere  omitted inthe 
Eqs. (31) and (24). In this case Eqs. (24) and (31) assume a quas ic lass ica l  form: 

Or2 + Or3 (45) 
Ox 2 - ~  = O, 

9 (Ox2) ~ + 1 + ~T1 OU Ox 8 

It is obvious that a solution of the sys tems  (45) and (46) can be sought, s imi lar ly  as in the c lass ica l  case,  
in the form (44). Then it follows di rec t ly  f rom Eq. (46) that convection is uprated by a quantity proport ion-  
al to U/c 2. 

The obtained result  conf i rms the hypothesis of Dyson [5] of the important  par t  played by convection 
in neutron s ta r s  in which pulsar  radiation may be explained by such a mechanism.  The obtained results  
can also be applied to supers t a r s  of Hoyle and Fowler[10], where the quantity U/c 2 is approximate ly equa l 
to 0.2-0.3. 

VO~ 
u 

C 
u i 

is the 3-veloci ty  component; 
is the gravi ty  potential; 
is the velocity of light; 
is the 4-veloci ty  component; 

NOTATION 
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• 
T 
W 

P 

P 

Tik 

rlk 

a re  the f i r s t  and second v i scos i ty  coeff icients  respect ive ly ;  
is the heat  conductivity coefficient;  
is the t empe ra tu r e ;  
is the heat  function; 
is the chemica l  potential;  
is the density; 
is the p r e s s u r e ;  
is the ene rgy  density; 
a r e  the e n e r g y -  momentum tensor ;  
a re  the Chris toffel  symbol;  
is the heat expansion coefficient.  
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